Abstract

Vascular dysfunction is a hallmark of hypertension and the strongest risk factor to date for coronary artery disease. As Y chromosome lineage has emerged as one of the strongest genetic predictors of cardiovascular disease risk to date, we investigated if Y chromosome lineage modulated this important facet in the stroke-prone spontaneously hypertensive rat (SHRSP) using consomic strains. Here, we show that vascular dysfunction in the SHRSP is attributable to differential cyclooxygenase (COX) activity with nitric oxide (NO) levels playing a less significant role. Measurement of prostacyclin, the most abundant product of COX in the vasculature, confirmed the augmented COX activity in the SHRSP aorta. This was accompanied by functional impairment of the vasodilatory prostacyclin (IP) receptor, while inhibition of the thromboxane (TP) receptor significantly ameliorated vascular dysfunction in the SHRSP, suggesting this is the downstream target responsible for constrictor prostanoid activity. Importantly, Y chromosome lineage was shown to modulate vascular function in the SHRSP through influencing COX activity, prostacyclin levels and IP dysfunction. Vascular dysfunction in the renal and intrarenal arteries was also found to be prostanoid and Y chromosome dependent. Interestingly, despite no apparent differences in agonist-stimulated NO levels, basal NO levels were compromised in the SHRSP aorta, which was also Y chromosome dependent. Thus, in contrast with the widely held view that COX inhibition is deleterious for the vasculature due to inhibition of the vasodilator prostacyclin, we show that COX inhibition abolishes vascular dysfunction in three distinct vascular beds, with IP dysfunction likely being a key mechanism underlying this effect. We also delineate a novel role for Y chromosome lineage in regulating vascular function through modulation of COX and basal NO levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.