Abstract

Finding a suitable mate for reproduction is one of the most important tasks for almost all animals. In insects this task is often facilitated by pheromone-mediated communication. While insect pheromones in general show enormous chemical diversity, closely related species often use structurally similar compounds in their pheromones. Despite this similarity, pheromones of congeneric species living in sympatry need to be species specific. We investigated the pheromone-mediated mate recognition by males of three closely related species of Leptopilina, a genus of parasitoid wasps that utilize the larvae of Drosophila as hosts. The study species, L. heterotoma, L. boulardi, and L. victoriae, occur sympatrically and have a similar ecology and life history. We have found that mate recognition is species specific in all three species. This species specificity is achieved by a differing importance of cuticular hydrocarbons (CHCs) and iridoids in the female mate recognition pheromones. In L. heterotoma the iridoids are of major importance while CHCs play a negligible role. In L. boulardi, however, the CHCs are as important as the iridoids, while in L. victoriae, the CHCs alone elicit a full behavioral response of males. Our results provide novel insights into pheromone evolution in insects by showing that selection on two completely different classes of chemical compounds may generate conditions where compounds from both classes contribute to a varying degree to the chemical communication of closely related species and that this variation also generates the species specificity of the signals.

Highlights

  • For successful reproduction sexual organisms need to find a suitable mate

  • In our previous study (Weiss et al, 2013), we have shown, that males of L. heterotoma were attracted by female-derived extracts of the sympatric species L. boulardi

  • Fractionation Fractions obtained from solid-phase extraction (SPE) and size-exclusion chromatography (SEC), respectively, were analyzed with gas chromatograph (GC)-mass spectrometer (MS) to ensure that the fractions contained only the expected compounds

Read more

Summary

Introduction

For successful reproduction sexual organisms need to find a suitable mate. Species-specific sex pheromones enable insects to recognize conspecifics with a high reliability and to date, over 1500 chemical compounds used as sex pheromones are known (El-Sayed, 2014). This large number of compounds is accompanied by an impressive diversity in pheromone composition, which ranges from a single compound to a dozen or more pheromone components (Wyatt, 2014), and includes compounds from many different chemical classes. Species from the same genus typically use structurally similar compounds in their pheromone communication (Wyatt, 2014), as has been found in numerous studies for instance in Lepidoptera, Coleoptera, and Hymenoptera (Hardie and Minks, 1999; Ando et al, 2004)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.