Abstract

The digestion of biogenic organic matter is an essential step of sample preparation within microplastic analyses. Organic residues hamper the separation of polymer particles especially within density separation or polymer identification via spectroscopic and staining methods. Therefore, a concise literature survey has been undertaken to identify the most commonly applied digestion protocols with a special focus on water and sediments samples. The selected protocols comprise different solutions, concentrations, and reaction temperatures. Within this study we tested acids (nitric acid and hydrochloric acid), bases (sodium hydroxide and potassium hydroxide), and oxidizing agents [hydrogen peroxide, sodium hypochlorite and Fenton's reagent (hydrogen peroxide 30% in combination with iron(II)sulfate 0.27%)] at different concentrations, temperature levels, and reaction times on their efficiency of biogenic organic matter destruction and the resistance of different synthetic polymers against the applied digestion protocols. Tests were carried out in three parallels on organic material (soft tissue—leaves, hard tissue—branches, and calcareous material—shells) and six polymers (low-density polyethylene, high-density polyethylene, polypropylene, polyamide, polystyrene, and polyethylene terephthalate) in two size categories. Before and after the application of different digestion protocols, the material was weighed in order to determine the degree of digestion efficiency and polymer resistance, respectively. The efficiency of organic matter destruction is highly variable. Calcareous shells showed no to very low reaction to oxidizing agents and bases, but were efficiently dissolved with both tested acids at all concentrations and at all temperatures. Soft and hard tissue were most efficiently destroyed by sodium hypochlorite. However, the other reagents can also have good effects, especially by increasing the temperature to 40–50°C. The additional temperature increase to 60–70°C showed a further but less effective improvement, compared to the initial temperature increase. The resistance of tested polymer types can be rated as good except for polyamide and polyethylene terephthalate. Increasing the concentrations and temperatures, however, results in accelerated degradation of all polymers. This is most evident for polyamide and polyethylene terephthalate, which show losses in weight between 15 and 100% when the digestion temperature is increased. This effect is most pronounced for polyamide in the presence of acids and for polyethylene terephthalate digested with bases. As a concluding recommendation the selection of the appropriate digestion method should be specifically tested within initial pre-tests to account for the specific composition of the sample matrix and the project objectives.

Highlights

  • The investigation of environmental pollution by synthetic polymers and its effects is a rapidly developing research discipline

  • For an objective evaluation of chemical digestion methods with a focus on water and sediment samples, the present study examines acids, bases, and oxidizing agents in different concentration ranges at three identical temperature levels using identical methods

  • For PA, the application of H2O2 50% at temperatures between 60 and 70◦C led to a mean decrease in weight of 8.7%

Read more

Summary

Introduction

The investigation of environmental pollution by synthetic polymers and its effects is a rapidly developing research discipline. Especially considering the detection of small particles, the separation of plastic particles from the sample matrix still poses a major challenge. The isolation of plastic particles requires the removal of the natural sample matrix consisting of mineral and biogenic organic substances. The optimal digestion method for the respective samples eliminates the biogenic organic matter as much as possible while preserving the target particles of synthetic polymers. For this purpose chemical digestion with acids, bases and oxidizing agents and enzymes are applied.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.