Abstract

Let α be an ordinal and κ be a cardinal, both infinite, such that κ ≤ |α|. For τ ∈αα, let sup(τ) = {i ∈ α: τ(i) ≠ i}. Let G κ = {τ ∈αα: |sup(τ)| < κ}. We consider variants of polyadic equality algebras by taking cylindrifications on Γ ⊆ α, |Γ| < κ and substitutions restricted to G κ. Such algebras are also enriched with generalized diagonal elements. We show that for any variety V containing the class of representable algebas and satisfying a finite schema of equations, V fails to have the amalgamation property. In particular, many varieties of Halmos’ quasi-polyadic equality algebras and Lucas’ extended cylindric algebras (including that of the representable algebras) fail to have the amalgamation property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.