Abstract

Abstract An examination of five temperature and five precipitation extreme indicators reveals an increase in both temperature and precipitation extremes over the 1926–2000 period in the northeast United States, with most of this increase occurring over the past four decades. Empirical orthogonal function (EOF) analysis of winter frost days (FD) and warm nights (TN90) and also winter consecutive dry days (CDD) and very wet days (R95T) over the 1950–2000 period reveals that some of the variability associated with changes in these extremes may be explained by variations in the Arctic Oscillation (AO), El Niño–Southern Oscillation (ENSO), and Pacific–North American (PNA) pattern. The most prominent feature of these results was the high correlation between the leading EOF of frost days and warm nights and the AO. Winter composites of temperature and precipitation extreme indicators were examined for different phases of the AO and ENSO during the 1926–2000 period. Overall, the AO is a better predictor of winter warm nights, while the ENSO is a better predictor of consecutive dry days in the northeast United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.