Abstract
200-MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters, acoustic impedance Z and tissue degree of mineralization of bone (DMB) in site-matched regions of interest in femoral bone of two inbred strains. Transverse femoral sections taken from 5 C57BL/6J@Ico (B6) and 5 C3H/HeJ@Ico (C3H) mice (5.5 months old) were explored. Mass density ρ, elastic coefficient c 11 and Young's modulus E 1 were locally derived in the distal epiphysis, distal metaphysis for trabecular bone and mid-diaphysis for cortical bone using a rule-of-mixture model. Structural parameter estimations obtained from X-ray tomographic and acoustic images were almost identical. Both strains had the same bone diameter, but the C3H mice had greater cortical thickness and smaller cancellous diameter than did B6 mice. The average DMB and impedance values were in the range between 1.13 and 1.33 g cm − 3 and 5.8 and 7.8 Mrayl, respectively. All tissue parameters were lower in B6 mice than in C3H mice. However, interstrain differences of DMB were much less (up to 3.8%) than differences of Z (up to 13.2%). SAM and SR-μCT fulfill the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT. The strong differences in the measured acoustic impedances among the two inbred strains indicate that the impedance is a good parameter to detect genetic variations of the skeletal phenotype in small animal models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.