Abstract

GEMS-0067 (PI 643420) maize line is a homozygous mutant of the recessive amylose-extender (ae) allele and an unknown number of high-amylose modifier (HAM) gene(s). GEMS-0067 produces starch with a approximately 25% higher resistant-starch (RS) content than maize ae single-mutant starches. The objective of this study was to understand how the HAM gene(s) affected the RS content and other properties of ae-background starches. Nine maize samples, including G/G, G/F1, G/H, F1/G, F1/F1, F1/H, H/G, H/F1, and H/H with HAM gene-dosages of 100, 83.3, 66.7, 66.7, 50, 33.3, 33.3, 16.7, and 0%, respectively, were produced from self- and intercrosses of GEMS-0067 (G), H99ae (H), and GEMS-0067xH99ae (F1) in a generation-means analysis (GMA) study. RS contents of examined starches were 35.0, 29.5, 28.1, 32.0, 28.2, 29.4, 12.9, 18.4, and 15.7%, respectively, which were significantly correlated with HAM gene-dosage (r = 0.81, p < 0.01). Amylose content, number of elongated starch granules, and conclusion gelatinization temperature increased with the increase in HAM gene-dosage. X-ray diffraction study showed that the relative crystallinity (%) of starch granules decreased with the increase in HAM gene-dosage. The results suggested that the HAM gene-dosage was responsible for changes in starch molecular structure and organization of starch granules and, in turn, the RS formation in the maize ae mutant starch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.