Abstract

A progressive change in the level of shock deformation is documented in autochthonous rocks from the central uplift of the Slate Islands impact structure, Lake Superior. Correlation of these observations, which are based mainly on the relative frequency of planar features of specific crystallographic orientation in quartz, with experimental data is used to estimate the average shock pressures recorded in the samples studied. Recorded pressures range from 5.8 to 15.3 GPa and generally increase towards the proposed shock centre. Variations in the shock response of quartz of different grain size and texture are observed within and between samples. It is apparent that large interlocking quartz grains in “eyes” record approximately 15–20% higher levels of shock deformation than small grains in mosaics or large isolated phenocrysts. These variations in shock deformation are attributed to the effect of shock wave reverberations between grains and length of shock pulse duration within grains. Comparison of the Slate Islands data with similar observations at the larger Charlevoix impact structure indicates that the rate of change of recorded shock pressure with distance is greater at the Slate Islands structure. This is interpreted as due to variations in the strain rates and/or the rate of shock wave attenuation with radial distance between impact structures of different size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.