Abstract

While modern variational methods for optic flow computation offer dense flow fields and highly accurate results, their computational complexity has prevented their use in many real-time applications. With cheap modern parallel hardware such as the Cell Processor of the Sony PlayStation 3, new possibilities arise. For a linear and a nonlinear variant of the popular combined local-global method, we present specific algorithms on this architecture that are tailored towards real-time performance. They are based on bidirectional full multigrid methods with a full approximation scheme in the nonlinear setting. Their parallel design on the Cell hardware uses a temporal instead of a spatial decomposition, and processes operations in a vector-based manner. Memory latencies are reduced by a locality-preserving cache management and optimised access patterns. For images of size 316 × 252 pixels, we obtain dense flow fields for up to 210 frames per second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.