Abstract

Motivated by recent experimental progress in the context of ultra-cold multi-color fermionic atoms in optical lattices, we have investigated the properties of the SU($N$) Heisenberg chain with totally antisymmetric irreducible representations, the effective model of Mott phases with $m < N$ particles per site. These models have been studied for arbitrary $N$ and $m$ with non-abelian bosonization [I. Affleck, Nuclear Physics B 265, 409 (1986); 305, 582 (1988)], leading to predictions about the nature of the ground state (gapped or critical) in most but not all cases. Using exact diagonalization and variational Monte-Carlo based on Gutzwiller projected fermionic wave functions, we have been able to verify these predictions for a representative number of cases with $N \leq 10$ and $m \leq N/2$, and we have shown that the opening of a gap is associated to a spontaneous dimerization or trimerization depending on the value of m and N. We have also investigated the marginal cases where abelian bosonization did not lead to any prediction. In these cases, variational Monte-Carlo predicts that the ground state is critical with exponents consistent with conformal field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.