Abstract
Natural Language Generation (NLG) plays a critical role in Spoken Dialogue Systems (SDSs), aims at converting a meaning representation into natural language utterances. Recent deep learning-based generators have shown improving results irrespective of providing sufficient annotated data. Nevertheless, how to build a generator that can effectively utilize as much of knowledge from a low-resource setting data is a crucial issue for NLG in SDSs. This paper presents a variational-based NLG framework to tackle the NLG problem of having limited annotated data in two scenarios, domain adaptation and low-resource in-domain training data. Based on this framework, we propose a novel adversarial domain adaptation NLG taclking the former issue, while the latter issue is also handled by a second proposed dual variational model. We extensively conducted the experiments on four different domains in a variety of training scenarios, in which the experimental results show that the proposed methods not only outperform previous methods when having sufficient training dataset but also show its ability to work acceptably well when there is a small amount of in-domain data or adapt quickly to a new domain with only a low-resource target domain data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.