Abstract
Balanced data is required for deep neural networks (DNNs) when learning to perform power system stability assessment. However, power system measurement data contains relatively few events from where power system dynamics can be learnt. To mitigate this imbalance, we propose a novel data augmentation strategy preserving the dynamic characteristics to be learnt. The augmentation is performed using Variational Mode Decomposition. The detrended and the augmented data are tested for distributions similarity using Kernel Maximum Mean Discrepancy test. In addition, the effectiveness of the augmentation methodology is validated via training an Encoder DNN utilizing original data, testing using the augmented data, and evaluating the Encoder’s performance employing several metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.