Abstract

We continue the study of symmetries in the Lagrangian formalism of arbitrary order with the help of the generalized Helmholtz equations (sometimes called the Anderson-Duchamp-Krupka equations). For the case of second-order equations and arbitrary vector fields we are able to establish a polynomial structure in the second-order derivatives. This structure is based on the some linear combinations of Olver hyper-Jacobians. We use as the main tools Fock space techniques and induction. This structure can be used to analyze Lagrangian systems with groups of Noetherian symmetries. As an illustration we analyze the case of Lagrangian equations with Abelian gauge invariance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.