Abstract

In this work, we perform variational calculations of two-electron reduced density matrices corresponding to open-shell N-electron systems within the framework of the doubly occupied configuration interaction treatment, traditionally limited to studies of closed-shell systems. This has allowed us to provide a satisfactory description of molecular systems in triplet states following two methods. One of them adds hydrogen atoms at an infinite distance of the triplet system studied, constituting a singlet supersystem. The energies and reduced density matrices of the triplet system are obtained by removing the contributions of the added atoms from the singlet supersystem results. The second procedure involves variational determination of the two-electron reduced density matrices corresponding to the triplet systems by means of adequate couplings of basis-set functions. Both models have been studied by imposing N-representability conditions on the reduced density matrix calculations. Results obtained from these methods for molecular systems in triplet ground states are reported and compared with those provided by benchmark methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.