Abstract

Blue noise point sampling is one of the core algorithms in computer graphics. In this paper, we present a new and versatile variational framework for generating point distributions with high-quality blue noise characteristics while precisely adapting to given density functions. Different from previous approaches based on discrete settings of capacity-constrained Voronoi tessellation, we cast the blue noise sampling generation as a variational problem with continuous settings. Based on an accurate evaluation of the gradient of an energy function, an efficient optimization is developed which delivers significantly faster performance than the previous optimization-based methods. Our framework can easily be extended to generating blue noise point samples on manifold surfaces and for multi-class sampling. The optimization formulation also allows us to naturally deal with dynamic domains, such as deformable surfaces, and to yield blue noise samplings with temporal coherence. We present experimental results to validate the efficacy of our variational framework. Finally, we show a variety of applications of the proposed methods, including nonphotorealistic image stippling, color stippling, and blue noise sampling on deformable surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.