Abstract

With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. However, fitting spatial models often involves expensive matrix decompositions, whose computational complexity increases in cubic order with the number of spatial locations. This situation is aggravated in Bayesian settings where such computations are required once at every iteration of the Markov chain Monte Carlo (MCMC) algorithms. In this paper, we describe the use of Variational Bayesian (VB) methods as an alternative to MCMC to approximate the posterior distributions of complex spatial models. Variational methods, which have been used extensively in Bayesian machine learning for several years, provide a lower bound on the marginal likelihood, which can be computed efficiently. We provide results for the variational updates in several models especially emphasizing their use in multivariate spatial analysis. We demonstrate estimation and model comparisons from VB methods by using simulated data as well as environmental data sets and compare them with inference from MCMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.