Abstract

Traveling solitary waves in the one-dimensional discrete nonlinear Schrödinger equation with saturable onsite nonlinearity are studied. A variational approximation (VA) for the solitary waves is derived in analytical form. The stability is also studied by means of the VA, demonstrating that the solitons are stable, which is consistent with previously published results. Then, the VA is applied to predict parameters of traveling solitons with non-oscillatory tails (embedded solitons, ESs). Two-soliton bound states are considered too. The separation distance between the solitons forming the bound state is derived by means of the VA. A numerical scheme based on the discretization of the equation in the moving coordinate frame is derived and implemented using the Newton–Raphson method. In general, good agreement between the analytical and numerical results is obtained. In particular, we demonstrate the relevance of the analytical prediction of characteristics of the embedded solitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.