Abstract

The objective of this article is the modeling and the numerical simulation of the response of elastoplastic structures to impacts. To this end, a numerical method is proposed that takes into account one-sided contact (Signorini condition) and impact phenomena together with plasticity in a monolithic solver, while accounting for the non-smooth character of the dynamics. The formulation of the plasticity and the contact laws are based on inclusions into normal cones of convex sets, or equivalently, variational inequalities following the pioneering work of Moreau (1974) and Halphen and Nguyen (1975), who introduced the assumptions of normal dissipation and of generalized standard materials (GSM) in the framework of associated plasticity with strain hardening. The proposed time–stepping method is an extension of the Jean and Moreau (1987) scheme for nonsmooth dynamics. The discrete energy balance shows that spurious numerical damping can be suppressed and that the scheme is in practice unconditionally stable. Furthermore, the finite-dimensional variational inequality at each time–step is well–posed and can be solved by optimization methods for convex quadratic programs, providing an interesting alternative to the return mapping algorithm coupled with a dedicated frictional contact method. The paper is completed by illustrative numerical examples of impacts on steel structures consisting of beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.