Abstract
During the operation of a single-layer grinding wheel (SLGW), irreversible changes occur on its active surface due to wear. The study of grinding-wheel microgeometry changes can be based on the measurement of the surface texture as well as the determination and analysis of its parameters. The article deals with the selection of suitable texture parameters and an appropriate mathematical model carrying information about the SLGW condition. In the study, samples of Pyrowear 53 steel were ground using electroplated cBN single-layer grinding wheels until they were completely worn out or removed assumed volume of the workpiece material. Each SLGW worked with constant process parameters. Among the 144 parameters tested, the highest sensitivity to changes in wheel active surfaces caused by wear was shown by the mean value of the mean island heights Zmean_m. In-depth research was conducted for Zmean_m and reduced peak height Spk. Compared to Spk, Zmean_m has proven to be a better measure of wear, especially when large areas of sticking occur. Moreover, the second-degree models linking Zmean_m and Spk to the process parameters and the specific material loss were better suited to the empirical data than the exponential models.
Highlights
In the middle of 20th century there were developed effective methods of fabrication, based on synthesis, of two abrasives which play an important role in abrasive machining of materials, i.e., polycrystalline diamond (PCD) and cubic boron nitride
Both abrasives have been shown to have significantly bigger hardness than other abrasives used before the development of PCD and cubic boron nitride (cBN)
In performed investigations all forms of grinding-wheel wear excluding breaking grains from the binder were determined from the 3D images of replicas reflecting real colors of observed textures
Summary
In the middle of 20th century there were developed effective methods of fabrication, based on synthesis, of two abrasives which play an important role in abrasive machining of materials, i.e., polycrystalline diamond (PCD) and cubic boron nitride (cBN). Both abrasives have been shown to have significantly bigger hardness than other abrasives used before the development of PCD and cBN. Electrolytic placement of a nickel-based binder enables manufacturing profile grinding wheels with big repeatability [1] The profile of such kind of grinding wheel does not change significantly during its operation because its active surface (AS) contains a single layer of a super-hard abrasive material [2,3]. Strong structure of those grinding wheels enables both applications of high cutting speed while grinding [4,5,6] and removing large amounts of material from machined workpieces in a unit of time [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.