Abstract

• The contribution to the carbon budget and growth by root acquisition of inorganic carbon and the influence that this has on NO 3 - and NH 4 + uptake and assimilation has not been adequately quantified. • The influence of varying root-zone CO 2 concentrations on tissue δ 13 C and δ 15 N was used to estimate the contribution to the carbon budget of root-assimilated carbon in tomato ( Lycopersicon esculentum ) seedlings. • Biomass accumulation was greater at 0.5% and 1% (v/v) root-zone CO 2 in NO 3 - and NH 4 + -fed plants than with 0% root-zone CO 2 . The plant δ 13 C values were not altered by 1% CO 2 with δ 13 C=-29.00‰, but they were increased when supplied with 1% CO 2 with δ 13 C=-10.91‰. The δ 15 N values of NO 3 - -fed plants were unchanged by variation in root-zone CO 2 concentration. In NH 4 + -fed plants the δ 15 N values were c. 1.5‰ higher at 1% CO 2 . • Changes in δ 13 C values with increased CO 2 concentration (δ 13 C=-10.91‰) were ascribed to root incorporation of CO 2 . Less than 5% of carbon was derived from root dark fixation and thus cannot explain increases in growth on a mass basis. Reduced discrimination with NH 4 + nutrition at 1% CO 2 could be related to increased exudation of NH 4 + and organic nitrogen and also reduced uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.