Abstract

BackgroundThe nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males. The prevalence of males in such a system is likely to depend on the relative pros and cons of outcrossing. While outcrossing generates novel allelic combinations and can therefore increase adaptive potential, it may also disrupt the potentially beneficial consequences of repeated generations of selfing. These include purging of deleterious alleles, inheritance of co-adapted allele complexes, improved hermaphrodite fitness and increased population growth. Here we use experimental and population genetic approaches to test hypotheses relating to male production and outcrossing in laboratory and natural populations of P. pacificus sampled from the volcanic island of La Réunion.ResultsWe find a significant interaction between sampling locality and temperature treatment influencing rates of spontaneous male production in the laboratory. While strains isolated at higher altitude, cooler localities produce a higher proportion of male offspring at 25 °C relative to 20 or 15 °C, the reverse pattern is seen in strains isolated from warmer, low altitude localities. Linkage disequilibrium extends across long physical distances, but fails to approach levels reported for the partially selfing nematode species Caenorhabditis elegans. Finally, we find evidence for admixture between divergent genetic lineages.ConclusionsElevated rates of laboratory male generation appear to occur under environmental conditions which differ from those experienced by populations in nature. Such elevated male generation may result in higher outcrossing rates, hence driving increased effective recombination and the creation of potentially adaptive novel allelic combinations. Patterns of linkage disequilibrium decay support selfing as the predominant reproductive strategy in P. pacificus. Finally, despite the potential for outcrossing depression, our results suggest admixture has occurred between distinct genetic lineages since their independent colonization of the island, suggesting outcrossing depression may not be uniform in this species.

Highlights

  • The nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males

  • Prediction 1: male generation can be predicted by an interaction between sampling locality climate and temperature treatment All male and hermaphrodite count data can be found in Additional File 2

  • This supports previous analyses indicating temperature treatment in the laboratory has a significant effect on levels of spontaneous male generation, and that the Strains isolated from montane localities within the “cold” climate group, at which maximum temperatures remain below 18 °C, show significantly elevated rates of male production under maintenance at 25 °C relative to either 20 °C or 15 °C

Read more

Summary

Introduction

The nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males. While outcrossing generates novel allelic combinations and can increase adaptive potential, it may disrupt the potentially beneficial consequences of repeated generations of selfing These include purging of deleterious alleles, inheritance of co-adapted allele complexes, improved hermaphrodite fitness and increased population growth. [1,2,3], reviewed in [4] Their ability to both produce and fertilize eggs gives hermaphrodites a distinct advantage over males. In nematode species such as Pristionchus pacificus and Caenorhabditis elegans, hermaphrodites are able to self-fertilize and reproduce without suffering physiological costs associated with copulation and mate searching. Since hermaphrodites are only capable of self-fertilization, the impact of males will depend on the advantages and disadvantages of selfing versus outcrossing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.