Abstract

Interspecific variation in relative brain size (encephalization), the relative size of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) and the level of cerebellar foliation was assessed in over 20 representative species of batoid (skates and rays), from eight families. Using species as independent data points and phylogenetically independent contrasts, relationships among each of the neuroanatomical variables and two ecological variables, habitat and lifestyle, were assessed. Variation in relative brain size and brain organization appears to be strongly correlated with phylogeny. Members of the basal orders Rajiformes and Torpediniformes tend to have relatively small brains, with relatively small telencephalons, large medullas, and smooth, unfoliated cerebellums. More advanced Myliobatiformes possess relatively large brains, with relatively large telencephalons, small medullas, and complex, heavily foliated cerebellums. Increased brain size, telencephalon size, and cerebellar foliation also correlate with living in a complex habitat (such as in association with coral reefs) and an active, benthopelagic lifestyle, but as primary habitat and lifestyle also closely match phylogenetic relationships in batoids, it is difficult to separate the influence of phylogeny and ecological factors on brain organization in these animals. However, the results of two forms of multivariate analysis (principal component analysis and cluster analysis) reveal that certain species are clustered with others that share ecological traits, rather than with more closely related species from the same order. This suggests that ecological factors do play a role in defining patterns of brain organization and there is some evidence for ‘cerebrotypes’ in batoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.