Abstract
This paper studies the variable selection of high-dimensional spatial autoregressive panel models with fixed effects in which a matrix transformation method is applied to eliminate the fixed effects. Then, a penalized quasi-maximum likelihood is developed for variable selection and parameter estimation in the transformed panel model. Under some regular conditions, the consistency and oracle properties of the proposed estimator are established. Some Monte-Carlo experiments and a real data analysis are conducted to examine the finite sample performance of the proposed variable selection procedure, showing that the proposed variable selection method works satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.