Abstract
In this paper, we develop a new variable selection procedure for quantile varying coefficient models with longitudinal data. The proposed method is based on basis function approximation and a class of group versions of the adaptive LASSO penalty, which penalizes the Lγ norm of the within-group coefficients with γ≥1. We show that with properly chosen adaptive group weights in the penalization, the resulting penalized estimators are consistent in variable selection, and the estimated functional coefficients retain the optimal convergence rate of nonparametric estimators under the true model. We assess the finite sample performance of the proposed procedure by an extensive simulation study, and the analysis of an AIDS data set and a yeast cell-cycle gene expression data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.