Abstract
In this paper we are concerned with the problems of variable selection and estimation in double generalized linear models in which both the mean and the dispersion are allowed to depend on explanatory variables. We propose a maximum penalized pseudo-likelihood method when the number of parameters diverges with the sample size. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and asymptotic properties of the resulting estimators are established. We also carry out simulation studies and a real data analysis to assess the finite sample performance of the proposed variable selection procedure, showing that the proposed variable selection method works satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.