Abstract
In this part of the two-part series of papers, algorithms for solving some variable programming (VP) problems proposed in Part I are investigated. It is demonstrated that the non-differentiability and the discontinuity of the maximum objective function, as well as the summation objective function in the VP problems constitute difficulty in finding their solutions. Based on the principle of statistical mechanics, we derive smooth functions to approximate these non-smooth objective functions with specific activated feasible sets. By transforming the minimax problem and the corresponding variable programming problems into their smooth versions we can solve the resulting problems by some efficient algorithms for smooth functions. Relevant theoretical underpinnings about the smoothing techniques are established. The algorithms, in which the minimization of the smooth functions is carried out by the standard quasi-Newton method with BFGS formula, are tested on some standard minimax and variable programming problems. The numerical results show that the smoothing techniques yield accurate optimal solutions and that the algorithms proposed are feasible and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.