Abstract

We note that some existing algorithms are based on the normalized least-mean square (NLMS) algorithm and aim to reduce the computational complexity of NLMS all inherited from the solution of the same optimization problem, but with different constraints. A new constraint is analyzed to substitute an extra searching technique in the set-membership partial-update NLMS algorithm (SM-PU-NLMS) which aims to get a variable number of updating coefficients for a further reduction of computational complexity. We get a closed form expression of the new constraint without extra searching technique to generate a novel set-membership variable-partial-update NLMS (SM-VPU-NLMS) algorithm. Note that the SM-VPU-NLMS algorithm obtains a faster convergence and a smaller mean-squared error (MSE) than the existing SM-PU-NLMS. It is pointed out that the closed form expression can also be applied to the conventional variable-step-size partial-update NLMS (VSS-PU-NLMS) algorithm. The novel variable-step-size variable-partial-update NLMS (VSS-VPU-NLMS) algorithm is also verified to get a further computational complexity reduction. Simulation results verify that our analysis is reasonable and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.