Abstract

The human brain microvasculature is constantly exposed to variable fluid flow regimes and their influence on the endothelium depends in part on the synchronous cooperative behavior between cell-cell junctions and the cytoskeleton. In this study, we exposed human cerebral microvascular endothelial cells to a low laminar flow (1 dyne⋅cm-2 ), high laminar flow (10 dyne⋅cm-2 ), low oscillatory flow (±1 dyne⋅cm-2 ), or high oscillatory flow (±10 dyne⋅cm-2 ) for 24 hr. After this time, endothelial cell-cell junction and cytoskeletal structural response was characterized through observation of zonula occludens-1 (ZO-1), claudin-5, junctional adhesion molecule-A (JAM-A), vascular endothelial cadherin (VE-Cad), and F-actin. In addition, we also characterized cell morphology through measurement of cell area and cell eccentricity. Our results revealed the greatest change in junctional structure reorganization for ZO-1 and JAM-A to be observed under low laminar flow conditions while claudin-5 exhibited the greatest change in structural reorganization under both low and high laminar flow conditions. However, VE-Cad displayed the greatest structural response under a high laminar flow, reflecting the unique responses each cell-cell junction protein had to each fluid flow regime. In addition, cell area and cell eccentricity displayed most significant changes under the high laminar flow and low oscillatory flow, respectively. We believe this study will be useful to the field of cell mechanics and mechanobiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.