Abstract

Aerosol radiative forcing is a critical, though variable and uncertain, component of the global climate. Yet climate models rely on sparse information of the aerosol optical properties. In situ measurements, though important in many respects, seldom provide measurements of the undisturbed aerosol in the entire atmospheric column. Here, 8 yr of worldwide distributed data from the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations. Established procedures for maintaining and calibrating the global network of radiometers, cloud screening, and inversion techniques allow for a consistent retrieval of the optical properties of aerosol in locations with varying emission sources and conditions. The multiyear, multi-instrument observations show robust differentiation in both the magnitude and spectral dependence of the absorption—a property driving aerosol climate forcing, for desert dust, biomass burning, urban‐industrial, and marine aerosols. Moreover, significant variability of the absorption for the same aerosol type appearing due to different meteorological and source characteristics as well as different emission characteristics are observed. It is expected that this aerosol characterization will help refine aerosol optical models and reduce uncertainties in satellite observations of the global aerosol and in modeling aerosol impacts on climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.