Abstract

The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure dependent on the type and severity of disease. Healthy male 12–14-week-old Wistar Kyoto (WKY), Wistar (WS) and Sprague Dawley (SD); and CVD-compromised spontaneously hypertensive (SH), Fawn-Hooded hypertensive (FHH), stroke-prone spontaneously hypertensive (SHSP), obese spontaneously hypertensive heart failure (SHHF) and obese JCR (JCR) rats were exposed to 0.0, 0.25, 0.5, or 1.0 ppm ozone for 4 h; pulmonary injury and inflammation were analyzed immediately following (0-h) or 20-h later. Baseline bronchoalveolar lavage fluid (BALF) protein was higher in CVD strains except for FHH when compared to healthy. Ozone-induced increases in protein and inflammation were concentration-dependent within each strain but the degree of response varied from strain to strain and with time. Among healthy rats, SD were least affected. Among CVD strains, lean rats were more susceptible to protein leakage from ozone than obese rats. Ozone caused least neutrophilic inflammation in SH and SHHF while SHSP and FHH were most affected. BALF neutrophils and protein were poorly correlated when considering the entire dataset (r = 0.55). The baseline and ozone-induced increases in cytokine mRNA varied markedly between strains and did not correlate with inflammation. These data illustrate that the degree of ozone-induced lung injury/inflammation response is likely influenced by both genetic and physiological factors that govern the nature of cardiovascular compromise in CVD models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.