Abstract

Lysimeter experiments were conducted to compare the vapour phase transport of 20 % ethanol- and butanol-blended gasoline (E20 and B20) compounds in soils using the unblended gasoline (UG) compounds as the standard. Sand containing approximately 0 and 5 % organic matter (0 %fom and 5 %fom) was used to simulate the vadose zone. The 5 %fom soil promoted higher vapour phase transport of compounds than the 0 %fom soil due to its higher porosity, hence, was used to compare the transport to the groundwater zone of the different gasoline blends. The addition of 20 % alcohol by volume to gasoline reduced the retentive capability of the soil for gasoline compound vapours and thus resulted in greater downward transport and higher accumulation of gasoline compounds in the groundwater zone. The transport of gasoline compounds from the vadose zone to the groundwater zone was found to be in the order of E20 > B20 > UG, indicating that the risk of groundwater contamination with gasoline compounds after a spill or leak is more likely to be greater for ethanol-blended gasoline compared with butanol-blended gasoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.