Abstract

Vapor–liquid equilibrium simulations of silicon were performed using the Stillinger–Weber potential with the Gibbs ensemble Monte Carlo method (GEMC). In the low temperature region, from about 3000 to 3500 K, our calculations show the stability of phases and good agreement with several experimental results. On the whole, there is little dependence on the size of the system except near the estimated critical point of silicon: Tc = 7500 ± 500 K and ρc = 750 ± 100 kg · m−3 as determined by the law of rectilinear diameter. Above 3500 K, vapor–liquid coexistence properties which have not been obtained by experiment are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.