Abstract
Covalent organic frameworks (COFs), known for their chemical stability and porous crystalline structure, hold promises as advanced separation membranes. However, fabricating high-quality COF membranes, particularly on industrial-preferred hollow fiber substrates, remains challenging. This study introduces a novel vapor/vapor-solid (V/V-S) method for growing ultrathin crystalline TpPa-1 COF membranes on the inner lumen surface of alumina hollow fibers (TpPa-1/Alumina). Through vapor-phase monomer introduction onto polydopamine-modified alumina at 170 °C and 1 atm, efficient polymerization and crystallization occur at the confined V-S interface. This enables one-step growth within 8 h, producing 100 nm thick COF membranes with strong substrate adhesion. TpPa-1/Alumina exhibits exceptional stability and performance over 80 h in continuous cross-flow organic solvent nanofiltration (OSN), with methanol permeance of about 200 L m-2 h-1 bar-1 and dye rejection with molecular weight cutoff (MWCO) of approximately 700 Da. Moreover, the versatile V/V-S method synthesizes two additional COF membranes (TpPa2Cl/Alumina and TpHz/Alumina) with different pore sizes and chemical environments. Adjusting the COF membrane thickness between 100-500 nm is achievable easily by varying the growth cycle numbers. Notably, TpPa2Cl/Alumina demonstrates excellent OSN performance in separating the model active pharmaceutical ingredient glycyrrhizic acid (GA) from dimethyl sulfoxide (DMSO), highlighting the method's potential for large-scale industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.