Abstract

Vapor-phase self-aldol condensation of butanal was performed over various solid catalysts. Among the tested catalysts, SiO2-Al2O3, Nb2O5 and TiO2 showed relatively high catalytic activity for the formation of aldol condensation product, 2-ethyl-2-hexenal, whereas all the catalysts deactivated rapidly. In order to stabilize the catalytic activity, metal-modified catalysts were investigated in hydrogen flow, and it was found that Ag-modified TiO2 showed the best catalytic performance. Characterizations such as XRD, TPD, TPR, TG-DTA, and DRIFT were performed for investigating the effect of the additive Ag and analyzing the coke component. The loaded Ag metal inhibited the formation of carbon accumulated on catalyst surface, and H2 carrier gas was indispensable in the inhibition. Ag would work as a remover of the products on the catalyst surface together with H2 to prevent dehydrogenation followed by coke formation. Self-aldol condensation of butanal was stabilized over Ag-modified TiO2 at Ag2O loadings higher than 3wt.% at 220°C in H2 flow. TiO2 with Ag2O of 5wt.% showed the best catalytic performance and gave a 72.2% selectivity to 2-ethyl-2-hexenal at 72.1% conversion in H2 flow at 220°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.