Abstract

Isothermal Vapor–Liquid Equilibrium (VLE) data for the binary mixture of CO2 + R-1234ze(E)(trans-1,3,3,3-tetrafluoroprop-1-ene) were measured using a static-analytic method apparatus at seven temperatures between 283.32 and 353.02 K and pressures up to 7.6 MPa. For temperatures over the critical temperature of pure CO2, the critical compositions and pressures of binary mixtures were approximated applying power laws with asymptotic behavior at critical point. The data were well correlated using the Peng–Robinson equation of state incorporating the generalized alpha function, with the Wong–Sandler mixing rules involving NRTL activity coefficient model. The experimental and correlated phase compositions were compared with Gibbs Ensemble Monte Carlo simulation data obtained at 293.15 K and 353.02 K. Though the molecular simulation predictions at low temperature (293.15 K) properly match experimental data, a slight shift appeared at high temperature (353.02 K), and the expected convergence of phase compositions near critical point was not fully observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.