Abstract

The highly persistent and often lethal human pathogen, Mycobacterium tuberculosis contains at least 88 toxin-antitoxin genes. More than half of these encode VapC PIN domain endoribonucleases that inhibit cell growth by unknown mechanisms. Here we show that VapC20 of M. tuberculosis inhibits translation by cleavage of the Sarcin-Ricin loop (SRL) of 23S ribosomal RNA at the same position where Sarcin and other eukaryotic ribotoxins cleave. Toxin-inhibited cells can be rescued by the expression of the antitoxin, thereby raising the possibility that vapC20 contributes to the extreme persistence exhibited by M. tuberculosis. VapC20 cleavage is inhibited by mutations in the SRL that flank the cleavage site but not by changes elsewhere in the loop. Disruption of the SRL stem abolishes cleavage; however, further mutations that restore the SRL stem structure restore cleavage, revealing that the structure rather than the exact sequence of the SRL is important for this activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.