Abstract

As vanadium was found to induce oxidative stress in the central nervous system, the morphological alterations of neurons and astroglial cells in adult rat central nervous system after vanadium exposure was studied, using histological markers of cellular injury. Animals were intraperitoneally injected with 3 mg/kg body weight of sodium metavanadate for 5 consecutive days. NADPH diaphorase histochemistry and heat shock protein (hsp) 70, glial fibrillary acidic protein (GFAP), and S-100 immunohistochemistry were performed in floating sections of several brain areas. NADPHd staining was higher in the molecular and granular layers of the cerebellar cortex, and small NADPHd-stained interneurons were observed in hippocampal sections in V(+5)-exposed animals. hsp 70 immunostaining showed the presence of reactive neurons in cerebellum of treated animals. GFAP and S-100 immunohistochemistry showed enlarged astrocytes in cerebellum and hippocampus in the V(+5)-exposed animals. The histological markers used showed that the main areas affected by vanadium-mediated free-radical generation were the hippocampus and the cerebellum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.