Abstract
As was proved by van der Waerden in 1933, every finite-dimensional locally bounded representation of a semisimple compact Lie group is continuous. This is the famous “van der Waerden continuity theorem,” and it motivated a vast literature. In particular, relationships between the assertion of the theorem (and of the inverse, in a sense, to this theorem) and some properties of the Bohr compactifications of topological groups were established, which led to the introduction and the study of certain classes of the so-called van der Waerden groups and algebras. Until now, after more than 70 years have passed, the van der Waerden theorem appears in monographs and surveys in diverse forms; new proofs were found and then simplified in important special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.