Abstract
To understand sparse systems, we must account for both strong local atom bonds and weak nonlocal van der Waals forces between atoms separated by empty space. A fully nonlocal functional form [Phys. Rev. B 62, 6997 (2000)]] of density-functional theory (DFT) is applied here to the layered systems graphite, boron nitride, and molybdenum sulfide to compute bond lengths, binding energies, and compressibilities. These key examples show that the DFT with the generalized-gradient approximation does not apply for calculating properties of sparse matter, while use of the fully nonlocal version appears to be one way to proceed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.