Abstract

To identify optimized MRI markers for evaluating chronic kidney disease (CKD) and renal interstitial fibrosis (IF). This prospective study included 43 patients with CKD and 20 controls. The CKD group was divided into mild and moderate-to-severe subgroups based on pathological results. Scanned sequences included T1 mapping, R2* mapping, intravoxel incoherent motion imaging, and diffusion-weighted imaging. One-way analyses of variance were used to compare MRI parameters among groups. Correlations of MRI parameters with estimated glomerular filtration rate (eGFR) and renal IF were analyzed using age as covariates. The support vector machine (SVM) model was used to evaluate the diagnostic efficacy of multiparametric MRI. Compared to control values, renal cortical apparent diffusion coefficient (cADC), medullary ADC (mADC), cortical pure diffusion coefficient (cDt), medullary Dt (mDt), cortical shifted apparent diffusion coefficient (csADC), and medullary sADC (msADC) values gradually decreased in the mild and moderate-to-severe groups, while cortical T1 (cT1) and medullary T1 (mT1) values gradually increased. Values of cADC, mADC, cDt, mDt, cT1, mT1, csADC, and msADC were significantly associated with eGFR and IF (p < 0.001). The SVM model indicated that multiparametric MRI combining cT1 and csADC can distinguish patients with CKD from controls with high accuracy (0.84), sensitivity (0.70), and specificity (0.92) (AUC: 0.96). Multiparametric MRI combining cT1 and cADC exhibited high accuracy (0.91), sensitivity (0.95), and specificity (0.81) for evaluating IF severity (AUC: 0.96). Multiparametric MRI combining T1 mapping and diffusion imaging may be of clinical utility in non-invasive assessment of CKD and IF. This study shows that multiparametric MRI combining T1 mapping and diffusion imaging may be clinically useful in the non-invasive assessment of chronic kidney disease (CKD) and interstitial fibrosis; this could provide information for risk stratification, diagnosis, treatment, and prognosis. •Optimized MRI markers for evaluating chronic kidney disease and renal interstitial fibrosis were investigated. •Renal cortex/medullary T1 values increased as interstitial fibrosis increased; cortical shifted apparent diffusion coefficient (csADC) correlated significantly with eGFR and interstitial fibrosis. •Support vector machine (SVM) combining cortical T1 (cT1) and csADC/cADC effectively identifies chronic kidney disease and accurately predicts renal interstitial fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.