Abstract

The mitochondrial metabolism of valproic acid (VPA) was investigated in vitro to elucidate its beta-oxidation pathway since the characterization of VPA intermediates in the acyl-CoA thioester form, and not just in their free acid form, has not been fully achieved. Intact rat liver mitochondria were incubated with [4,5-3H2]VPA and [2-3H]VPA. The respective intermediates, valproyl-CoA, Delta2(E)-valproyl-CoA, 3-hydroxyvalproyl-CoA, and 3-oxovalproyl-CoA were analyzed by reverse phase high performance liquid chromatography (HPLC) with radioisotope and UV detection. An unknown metabolite, originating from both labeled substrates, was detected. It was identified as valproyl-dephosphoCoA (valproyl-dephCoA) by fast atom bombardment mass spectrometry (FAB-MS) analysis of the corresponding HPLC peak fraction. The FAB-MS spectrum of the authentic chemically synthesized valproyl-dephCoA proved to be consistent with that of the unknown compound. Valproyl-dephCoA is produced from valproyl-CoA in mitochondria, probably via a phosphatase-catalyzed reaction. This conversion was shown to be more dependent on the energy state involving [AXP] ([AXP] = [ATP] + [ADP] + [AMP]) and [phosphate] concentrations rather than the strict mitochondrial [ATP]/[ADP] ratio. The results indicate that higher concentrations of AXP and phosphate inhibit the dephosphorylation of valproyl-CoA. A complete understanding of the toxic significance of valproyl-dephCoA formation in vivo as a potential inhibitor of fatty acid beta-oxidation is important to clarify the pathogenesis of VPA-associated hepatotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.