Abstract

Valley polarization has recently been adopted in optics, offering robust waveguiding and angular momentum sorting. The success of valley systems in photonic crystals suggests a plasmonic counterpart that can merge topological photonics and topological condensed matter systems, for instance, two-dimensional materials with the enhanced light-matter interaction. However, a valley plasmonic waveguide with a sufficient propagation distance in the near-infrared (NIR) or visible spectral range has so far not been realized due to ohmic loss inside the metal. Here, we employ gap surface plasmons for high index contrasting and realize a wide-bandgap valley plasmonic crystal, allowing waveguiding in the NIR-visible range. The edge mode with a propagation distance of 5.3 μm in the range of 1.31-1.36 eV is experimentally confirmed by visualizing the field distributions with a scanning transmission electron microscope cathodoluminescence technique, suggesting a practical platform for transferring angular momentum between photons and carriers in mesoscopic active devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.