Abstract

The development of point-of-care (POC) diagnostic systems has received well-deserved attention in recent years in the scientific literature, and many experimental systems show great promise in real settings. However, in the case of an epidemic emergency (or a natural disaster), the first line of response should be based on commercially available and validated resources. Here, we compare the performance and ease of use of the miniPCR, a recently commercially available compact and portable PCR device, and a conventional thermocycler for the diagnostics of viral nucleic acids. We used both thermocyclers to detect and amplify Ebola and Zika DNA sequences of different lengths (in the range of 91 to 300 nucleotides) at different concentrations (in the range of ~50 to 4.0 x 108 DNA copies). Our results suggest that the performance of both thermocyclers is quite similar. Moreover, the portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for point-of-care nucleic acid detection and amplification.

Highlights

  • The development of cost-efficient diagnostic point of care (POC) systems for the opportune diagnosis of infectious diseases is a research niche of high relevance [1,2]

  • The challenge of POC detection of viral threats is of paramount importance, in underdeveloped regions and in emergency situations

  • Our results suggest that the capacity of selective amplification in a conventional thermocycler and in a miniPCR is essentially the same

Read more

Summary

Introduction

The development of cost-efficient diagnostic point of care (POC) systems for the opportune diagnosis of infectious diseases is a research niche of high relevance [1,2]. The recent pandemic/epidemic episodes associated with viral diseases (e.g., influenza epi-centered in Mexico in 2009 [3,4], Ebola in West Africa in 2013–2015 [5,6,7], and Zika in Latin America and Southeast Asia in 2016 [8,9,10]) are tangible and cruel reminders of the need for portable, low-cost, and easy-to-use diagnostic systems that can effectively address epidemic episodes in remote or underprivileged areas [5,9,11,12].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.