Abstract

AbstractThe novel Aeolus satellite, which carries the first Doppler wind lidar providing profiles of horizontal line‐of‐sight (HLOS) winds, addresses a significant gap in direct wind observations in the global observing system. The gap is particularly critical in the tropical upper troposphere and lower stratosphere (UTLS). This article validates the Aeolus Rayleigh–clear wind product and short‐range forecasts of the European Centre for Medium‐Range Weather Forecasts (ECMWF) with highly accurate winds from the Loon super pressure balloon network at altitudes between 16 and 20 km. Data from 229 individual balloon flights are analysed, applying a collocation criterion of 2 hr and 200 km. The comparison of Aeolus and Loon data shows systematic and random errors of 0.31 and 6.37 ms, respectively, for the Aeolus Rayleigh–clear winds. The horizontal representativeness error of Aeolus HLOS winds (nearly the zonal wind component) in the UTLS ranges from 0.6–1.1 ms depending on the altitude. The comparison of Aeolus and Loon datasets against ECMWF model forecasts suggests that the model systematically underestimates the HLOS winds in the tropical UTLS by about 1 ms. While Aeolus winds are currently considered as point winds by the ECMWF data assimilation system, the results of the present study demonstrate the need for a more realistic HLOS wind observation operator for assimilating Aeolus winds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.