Abstract

The evaluation of integrity of structural components is often based on the proof of leak-before-break (LBB). Leak-before-break behaviour in piping constitutes a fail-safe condition. Which means that, during multiplied loading conditions, a defect results at first in a leakage. The crack length which leads to the leakage is smaller than the critical through-wall crack length. Simplified fracture mechanics concepts are used for the demonstration of LBB. For this the conservative, safe calculation of the critical through-wall crack length for ductile failure is necessary. To validate simplified calculation methods for circumferential cracks (flow stress concept (FSC); plastic limit load (PLL)) and for axial cracks (Battelle approach (BMI); Ruiz approach (RUIZ)) all available experiments on real structural components, especially on pipes, were analysed and evaluated by the mentioned simplified methods (approximately 460 experiments). The methods were adapted by application of correction factors, mainly on the flow stress, to result in conservative (safe) and realistic (as near as possible to the experiments) predictions. Depending on method (FSC, PLL, BMI, RUIZ), crack orientation (circumferential and axial cracks) and type of material (ferritic and austenitic material) different definitions of flow stresses were established.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.