Abstract
BackgroundThe genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus.ResultsEucalyptus globulus Labill, Eucalyptus urograndis (hybrid from Eucalyptus urophylla S.T. Blake X Eucalyptus grandis Hill ex-Maiden) and E. uroglobulus (hybrid from E. urograndis X E. globulus) were subjected to different treatments, including water deficiency and stress recovery, low temperatures, presence or absence of light, and their respective controls. Except for treatment with light, which examined the seedling hypocotyl or apical portion of the stem, the expression analyses were conducted in the apical and basal parts of the stem. To select the best pair of genes, the bioinformatics tools GeNorm and NormFinder were compared. Comprehensive analyses that did not differentiate between species, treatments, or tissue types, showed that IDH (isocitrate dehydrogenase), SAND (SAND protein), ACT (actin), and A-Tub (α-tubulin) genes were the most stable. IDH was the most stable gene in all of the treatments.ConclusionComparing these results with those of other studies on eucalyptus, we concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin). It is usually recommended a minimum of two reference genes is expression analysis; therefore, we propose that IDH and two others genes among the five identified genes in this study should be used as reference genes for a wide range of conditions in eucalyptus.
Highlights
The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world
The genus Eucalyptus belongs to the Myrtaceae family, which consists of approximately 600 species and subspecies, exhibits physiological plasticity with worldwide dispersion and successfully grows in different regions
We evaluated normaliser genes in E. urograndis, E. uroglobulus, and E. globulus plants exposed to low temperature and stressed with water shortage
Summary
The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus. The genus Eucalyptus belongs to the Myrtaceae family, which consists of approximately 600 species and subspecies, exhibits physiological plasticity with worldwide dispersion and successfully grows in different regions. It has been reported that more than 600,000 acres are cultivated with this hybrid species in Brazil, being the basis of the Brazilian silviculture for the production of cellulose and paper [10]. E. uroglobulus is a hybrid derived from E. urograndis x E. globulus, with a high cellulose yield [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.