Abstract
The main objective of the Beta Beams is to study oscillation property of pure electrons neutrinos. It produces high energy beams of pure electron neutrinos and anti-neutrinos for oscillation experiments by beta decay of 6He and 18Ne radioactive ion beams, stored in a decay ring at γ=100. The production of 6He beam has already been accomplished using a thick beryllium oxide target. However, the production of the needed rate of 18Ne has proven to be more challenging. In order to achieve the requested yield for 18Ne a new high power target design based on a circulating molten salt loop has been proposed. To verify some elements of the design, a static molten salt target prototype has been developed at ISOLDE and operated successfully. This paper describes the electro-thermal study of the molten salt target taking into account the heat produced by Joule effect, radiative heat exchange, active water cooling due to forced convection and air passive cooling due to natural convection. The numerical results were compared with the available experimental data in order to validate the model. This approach allows one to improve the reliability of the model, which will help to predict the thermo-mechanical impact of the required targets for future facilities such as HIE-ISOLDE and the Beta-Beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.