Abstract

SummaryThis study developed a well-standardized and reproducible approach for micro-finite element (mFE) and homogenized-FE (hFE) analyses that can accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study.IntroductionMicro-FE analyses based on high-resolution peripheral quantitative CT (HR-pQCT) images are frequently used to predict distal radius failure load. With the introduction of a second-generation HR-pQCT device, however, the default modelling approach no longer provides accurate results. The aim of this study was to develop a well-standardized and reproducible approach for mFE and hFE analyses that can provide precise and accurate results for distal radius failure load predictions based on second-generation HR-pQCT images.MethodsSecond-generation HR-pQCT was used to scan the distal 20-mm section of 22 cadaver radii. The sections were excised and mechanically tested afterwards. For these sections, mFE and hFE models were made that were used to identify required material parameters by comparing predicted and measured results. Using these parameters, the models were cropped to represent the 10-mm region recommended for clinical studies to test their performance for failure load prediction.ResultsAfter identification of material parameters, the measured failure load of the 20-mm segments was in good agreement with the results of mFE models (R2 = 0.969, slope = 1.035) and hFE models (R2 = 0.966, slope = 0.890). When the models were restricted to the clinical region, mFE still accurately predicted the measured failure load (R2 = 0.955, slope = 1.021), while hFE predictions were precise but tended to overpredict the failure load (R2 = 0.952, slope = 0.780).ConclusionsIt was concluded that it is possible to accurately predict the distal radius failure load using either mFE or hFE models when using the approaches and parameters developed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.