Abstract

The current study presents an experimental procedure used to determine bedload sediment transport rates in channels with high gradients and coarse sediment. With the aim to validate the procedure for further investigations, laboratory experiments were performed to calculate bedload transport rates. The experiments were performed in a laboratory tilting flume with slopes ranging from 3% to 5%. The sediment particles were uniform in shape (spheres). The experiments were divided into four cases based on sediment size. Three cases of uniform sizes of 10 mm, 15 mm and 25 mm and a case with a grain size distribution formed with the uniform particle sizes were considered. From the experimental results a mathematical bedload transport model was obtained through multiple linear regression. The experimental model was compared with equations presented in the literature obtained for gravel bed rivers. The experimental results agree with some of the models presented in the literature. The closest agreement was seen with models developed for steep slopes especially for the highest slopes considered in the present study. Therefore, it can be concluded that the methodology used can be replicated for the study of bedload transport rates of channels with high gradients and coarse sediment particles to study more general cases of this process such as sediments with non-uniform shapes and sizes. However, a simplified model is proposed to estimate bedload transport rates for slopes up to 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.