Abstract

Higher capacity factors compared to the onshore wind, decreasing cost of energy make floating wind turbines a powerful source of carbon-free energy future. Response of floating wind turbines can be observed over numerical analyses and physical model tests. In this study, the dynamic response of a TLP FWT numerical model is investigated under regular and irregular waves and compared with a scaled physical model. Open-source numerical tools are utilized in the time-domain and frequency domain. The comparison of the full-scale responses between the numerical and the experimental results are based on the use of measured waves as input to the numerical model to reduce the uncertainties in the wave simulations. Hydrodynamic damping in the numerical model is tuned according to the decay tests on the scaled physical model. Overall, close estimations of the physical model motion response, tendon tensions, and tower base moments are obtained over the comparisons of time histories, RAO, and statistics. Uncertainties in the physical model measurements and the limits of the numerical model are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.